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Simple Summary: Plants often harbor persistent plant virus infection transmitted only vertically
through seeds, resulting in no obvious symptoms (cryptic infections). Several studies have shown
that such cryptic infections provide resilience against abiotic (and biotic) stress. We have recently dis-
covered a new group of cryptic plant viruses infecting mitochondria (plant mitovirus). Mitochondria
are cellular organelles displaying a pivotal role in protecting cells from the stress of nature . Here, we
look at the proteomic alterations caused by the mitovirus cryptic infection of Chenopodium quinoa by
Systems Biology approaches allowing one to evaluate data at holistic level. Quinoa is a domesticated
plant species with many exciting features of abiotic stress resistance, and it is distinguished by its
exceptional nutritional characteristics, such as the content and quality of proteins, minerals, lipids,
and tocopherols. These features determined the growing interest for the quinoa crop by the scientific
community and international organizations since they provide opportunities to produce high-value
grains in arid, high-salt and high-UV agroecological environments. We discovered that quinoa lines
hosting mitovirus activate some metabolic processes that might help them face drought. These find-
ings present a new perspective for breeding crop plants through the augmented genome provided by
accessory cryptic viruses to be investigated in the future.

Abstract: Plant mitoviruses belong to Mitoviridae family and consist of positive single-stranded
RNA genomes replicating exclusively in host mitochondria. We previously reported the biological
characterization of a replicating plant mitovirus, designated Chenopodium quinoa mitovirus 1
(CqMV1), in some Chenopodium quinoa accessions. In this study, we analyzed the mitochondrial
proteome from leaves of quinoa, infected and not infected by CqMV1. Furthermore, by protein–
protein interaction and co-expression network models, we provided a system perspective of how
CqMV1 affects mitochondrial functionality. We found that CqMV1 is associated with changes in
mitochondrial protein expression in a mild but well-defined way. In quinoa-infected plants, we
observed up-regulation of functional modules involved in amino acid catabolism, mitochondrial
respiratory chain, proteolysis, folding/stress response and redox homeostasis. In this context, some
proteins, including BCE2 (lipoamide acyltransferase component of branched-chain alpha-keto acid
dehydrogenase complex), DELTA-OAT (ornithine aminotransferase) and GR-RBP2 (glycine-rich
RNA-binding protein 2) were interesting because all up-regulated and network hubs in infected
plants; together with other hubs, including CAT (catalase) and APX3 (L-ascorbate peroxidase 3), they
play a role in stress response and redox homeostasis. These proteins could be related to the higher
tolerance degree to drought we observed in CqMV1-infected plants. Although a specific causative
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link could not be established by our experimental approach at this stage, the results suggest a new
mechanistic hypothesis that demands further in-depth functional studies.

Keywords: proteomics; mitochondrion; PPI; co-expression; network; virus; quinoa; systems biology

1. Introduction

Mitoviruses belong to Mitoviridae family inside the Lenarviricota phylum and consist
of positive single-stranded RNA (ssRNA) genomes. Most mitoviruses replicate exclusively
in host mitochondria. It is suggested they are derived from an ancestral mitochondrial
phage by losing the capsid protein [1]. In fact, they are naked viruses presenting only
one open reading frame (ORF) that encodes one protein, the RNA-dependent RNA poly-
merase (RdRp) [2]. By investigating complete plant and fungal genomes, the presence
of nonretroviral endogenous RNA viral elements has been revealed in almost all of the
eukaryotic nuclear genomes [3–5]. In particular, Bruenn et al. demonstrated the presence of
mitoviral sequences in many plant nuclear and mitochondrial genomes [5], which was the
first indirect evidence that plants, at some point, could also become infected by mitoviruses;
more recently, further indirect evidence of replicating plant mitoviruses has been provided
by mining the transcriptome of a number of plant species [6]. In this scenario, we have
previously reported the complete genome sequence and the biological characterization
of a replicating plant mitovirus, designated Chenopodium quinoa mitovirus 1 (CqMV1),
in some Chenopodium quinoa accessions [7]. Mitoviruses were first discovered and charac-
terized in fungi, but recently, in addition to their occurrence in some plant mitochondria,
evidence of mitoviruses infecting insects was also provided [8].

Based on the knowledge that mitoviruses typically infect, replicate and persist in
the mitochondria [9], including our own specific fractionation studies on CqMV1 [7],
in this study we evaluated the quinoa mitochondrial proteome modulation, due to CqMV1
infection. For this goal, we combined proteomic and systems biology approaches based on
network analysis [10]. To date, few works have focused on quinoa proteome by shotgun
approaches [11–13], while none have relied on protein–protein interaction (PPI) and/or
protein co-expression (Co-Exp) network analysis. This is mainly due to the lack of a
quinoa PPI network model and accurate functional annotations [14]. However, the number
of studies focusing on PPIs prediction in plants is constantly increasing [15–17]. PPI
network reconstruction often relies on orthologs in model plants, such as Arabidopsis
thaliana [14,18]. Although this approach presents some limitations, ranging from false
positives to poor coverage from associalogs, it represents a valuable strategy for a rapid
PPI network inference in plant organisms [19]. Alternatively, and complementarily to PPI,
Co-Exp models, reconstructed from experimental proteomic data, represent a way to model
large-scale proteomic datasets of non-model plants as networks [18,20].

In addition, to characterize the mitochondrial proteome from leaves of quinoa infected
(+CqMV1) and not infected (−CqMV1) by CqMV1, we reconstructed quinoa PPI and
Co-Exp network models by homology with Arabidopsis. These models were processed to
identify hubs and differentially correlated proteins, as well as functional modules whose
expression was affected by mitovirus infection [10,18]. Thus, we here intend to provide
a molecular and system perspective of how CqMV1 affects mitochondrial functionality,
shedding light on proteins with a key role in the response to viral infection within mito-
chondria.

2. Materials and Methods
2.1. Plant Materials

Plants used in this study corresponded to two virus-infected lines (cv Regalona and
accession IPSP; +CqMV1 lines) and two virus-free ones (BO78 and BO25; −CqMV1 lines).
Source of these lines has been previously described [7]. Plants were grown in a commercial
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soil substrate in 9 cm diameter pots in insect-proof greenhouses with a maximum temper-
ature set at 28 °C and minimum set at 20 °C, with natural light supplemented in winter
with fluorescent lamps. The 10 youngest and most fully developed leaves were harvested
from each plant 4 weeks after transplant, when plants had an approximate height of 40
cm. Drought stress was established on plants (4 weeks after transplant) by stopping water
supply for 4 days, and relative water content (RWC) was determined [21].

2.2. Mitochondrial Enrichment Protocol

Mitochondrion-enriched fractions were obtained by a modified protocol already used
for Cucumis sativus [22]. Ten grams of quinoa leaves was homogenized at a ratio of 1:10 in
chilled extraction buffer (0.45 M sucrose, 15 mM morpholine propanesulfonic acid (MOPS),
1.5 mM EGTA, pH 7.4, with KOH) with 0.6% polyvinylpyrrolidone (PVP), 0.2% bovine
serum albumin (BSA), 10 mM dithiothreitol and 0.2 mM phenylmethylsulfonyl fluoride
(PMSF). After filtration on Miracloth (Calbiochem), the homogenate was centrifuged at
2000× g for 5 min to separate chloroplasts and cell debris. The supernatant was again
centrifuged at 13,000× g for 30 min to obtain the mitochondrial fraction in the pellet.
The crude mitochondrial pellet was resuspended in 1 mL of washing buffer (WB; 0.6 M
sucrose, 20 mM MOPS, 2 mM EGTA, pH 7.2, with KOH) with 0.2 mM PMSF, layered on a
Percoll gradient (18%, 23% and 40% in WB), and centrifuged at 12,000× g in an SW21 rotor
(Beckmann) for 45 min. The mitochondrial fraction, between the 23% and 40% interface,
was collected with a Pasteur pipette, diluted in 30 mL of SRM buffer, and centrifuged
at 2000× g for 5 min to remove all the Percoll. This step was repeated two times. We
resuspended the pellet in about 0.1 mL WB and checked the quality of purification by ob-
servation with a fluorescence microscope [7]. Finally, the mitochondrial-enriched fractions
were stored at −80 °C until use for protein extraction and LC-MS/MS analysis.

2.3. Sample Preparation for LC-MS

The enriched mitochondrial fractions were centrifuged at 12,000× g for 20 min and
treated with RapiGestTM SF reagent (Waters Co, Milford, MA, USA) at the final concen-
tration of 0.25% (w/v). The resulting suspensions were incubated under stirring at 100 °C
for 20 min. Subsequently, the samples were cooled at room temperature and centrifuged
10 min at 2200× g. The protein concentration was assayed using the SPNTM Protein Assay
kit (G-Biosciences, St. Louis, MO, USA), and 50 ± 0.5 µg protein from each sample was
digested with Sequencing-Grade Modified Trypsin (Promega Inc., Madison, WI, USA)
using a 1:50 (w/w) enzyme/substrate ratio at 37 °C overnight. The next morning, an ad-
ditional aliquot of trypsin (1:100 w/w) was added at an enzyme/substrate ratio of 1:100
(w/w) and the digestion continued for 4 h. Enzymatic digestion was chemically stopped
with the addition of 0.5% trifluoroacetic acid (TFA) (Sigma-Aldrich Inc., St. Louis, MO,
USA), and a subsequent incubation at 37 °C for 45 min completed the RapiGestTM SF
acid hydrolysis. Water immiscible degradation products were removed by centrifugation
at 13,000 rpm for 10 min. Finally, the digested mixtures were desalted using PierceTM
C-18 spin columns (Thermo Fisher Scientific, Pierce Biotechnology, Rockford, IL, USA),
concentrated in a SpeedVac (Savant Instruments Farmingdale, NY, USA) at 60 °C and
resuspended in 0.1% formic acid (Sigma-Aldrich Inc., St. Louis, MO, USA) in water (LC-
MS Ultra CHROMASOLVTM, Honeywell Riedel-de HaenTM, Muskegon, MI, USA) at a
concentration of 0.2 µg/µL.

2.4. Nano LC-MS/MS Analysis

Enriched mitochondrial fractions from leaves of quinoa lines, not infected (BO25,
BO78; n = 6 per line) and infected (IPSP, Regalona (REG); n = 6 per line), for a total of 24 LC-
MS/MS runs, were analyzed by LC-MS/MS; specifically, n = 3 biological replicates × n = 2
technical replicates per line were considered. Trypsin-digested mixtures were analyzed
by means of a platform consisting of the Eksigent nanoLC-Ultra 2D System (Eksigent, AB
SCIEX, Dublin, CA, USA), configured in trap-elute mode, coupled with a high-resolution
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mass spectrometer. Samples were first loaded on the nanoLC trap (200 µm × 500 µm
ChromXP C18, 3 µm, 120 Å) and washed with the loading pump running in isocratic
mode with 0.1% formic acid in water for 10 min at a flow rate of 3 µL/min. The automatic
switching of nanoLC ten-port valve then eluted the trapped mixture on a nano-reversed
phase column (75 µm × 15 cm 3C18-CL, 3 µm, 120 Å), through a 140 min gradient of
eluent B (eluent A, 0.1% formic acid in water; eluent B, 0.1% formic acid in acetonitrile),
at a flow rate of 300 nL/min. Specifically, gradient was: from 5–10% B in 3 min, 10–50%
B in 104 min, 50–95% B in 20 min and holding at 95% B for 13 min. Mass spectra were
acquired using a LTQ-Orbitrap XL-ETD mass spectrometer (Thermo Fisher Scientific, San
José, CA, USA), equipped with a nano-spray ionization source (Thermo Fisher). The spray
capillary voltage was set at 1.7 kV, and the ion transfer capillary temperature was held at
220 °C. Full mass spectra were recorded in positive ion mode over a 400–1600 m/z range,
resolution setting of 30000 FWHM and scan rate of 2 spectra per second, followed by five
low-resolution MS/MS events sequentially generated in a data-dependent manner on the
top five most intense ions selected from the full MS spectrum (at 35% collision energy),
using dynamic exclusion of 0.5 min for MS/MS analysis. Mass spectrometer scan functions
and high-performance liquid chromatography solvent gradients were controlled by the
Xcalibur data system version 1.4 (Thermo Fisher Scientific, Monza, Italy).

2.5. Processing of Raw Mass Spectra

All raw files produced by LC-MS/MS were processed by the SEQUEST HT algorithm
contained in Proteome Discoverer 2.5 software (Thermo Fisher Scientific, San José, CA,
USA). Experimental MS/MS spectra were compared with the theoretical mass spectra
obtained by in silico digestion of a Chenopodium quinoa protein database containing 63173
sequences (www.ncbi.nlm.nih.gov, accessed on 1 May 2021) plus Chenopodium quinoa
mitovirus 1 RNA-dependent RNA polymerase (RdRp) (www.uniprot.org, accessed on 1
May 2021). The following searching criteria were set: trypsin enzyme, maximum number
of missed cleavages per peptide was set to 3, mass tolerances of ±50 ppm for precursor
ions and ±0.8 Da for fragment ions. Percolator node was used with a target-decoy strategy
to give a final false discovery rate (FDR) ≤0.01 based on q-values, considering maximum
deltaCN of 0.05. Only peptides with minimum peptide length of 5 amino acids, confidence
at “Medium” level and rank 1 were considered. Protein grouping and strict parsimony
principle were applied.

2.6. Protein Profiles Preprocessing, Statistical Evaluations and Quantitative Analysis

Due to the high redundancy rate of sequences in Chenopodium quinoa fasta file, identi-
fied protein sequences were compared by Clustal Omega Tool [23]. Pairwise alignment
score cutoff (≤0.1) was considered for redundancy evaluation; an in house R script, based
on splitstackshape and dplyr libraries, was used to collapse redundant sequences. Selected
distinct proteins were processed by STRING [24] and by UNIPROT BLAST to retrieve
Arabidopsis thaliana homologous proteins/genes. Subcellular localization of the identified
quinoa proteins was predicted by Plant-mSubP tool [25,26]. It predicts 11 single locations
(cell membrane, cell wall, plastid, cytoplasm, endoplasmic reticulum, extracellular, golgi
apparatus, mitochondrion, nucleus, peroxisome and vacuole) and takes into consideration
also three significant multi location proteins (cytoplasm-nucleus, mitochondrion-plastid
and cytoplasm-golgi apparatus). Specifically, we used the PseAACNCCDipep module of
Plant-mSubP because it considers the hybrid feature of the pseudo amino acid composition,
and in comparison to other Plant-mSubP modules PseAACNCCDipep showed the best
overall accuracy. In addition, to increase the selection of putative mitochondrial proteins we
have taken into consideration also the UNIPROT gene ontology (GO) cellular component
(CC) of Arabidopsis thaliana homologous proteins.

Spectral counts (SpCs) of the identified proteins were normalized using a total signal
normalization method [27] and compared using a label-free quantification approach based
on SpCs [28]. Data matrix dimensionality (24 samples× 2186 distinct proteins) was reduced

www.ncbi.nlm.nih.gov,
www.uniprot.org,
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by linear discriminant analysis (LDA); a pairwise comparison (−CqMV1 vs. +CqMV1)
was performed and proteins with p-value ≤ 0.05 were retained. Fold change (by DAve
index) [29] of proteins selected by LDA was estimated by comparing average−CqMV1 and
+CqMV1 spectral counts (avSpCs); positive DAve values indicate proteins up-regulated in
−CqMV1 plants, whereas negative DAve values indicate proteins up-regulated in +CqMV1.
Differentially expressed proteins (DEPs) selected by LDA were processed by hierarchical
clustering by applying the Ward’s method and the Euclidean distance metric. In addition,
SpCs of DEPs were processed by Spearman’s rank correlation and principal component
analysis (PCA). All processing were performed by JMP15.2 SAS software.

2.7. Chenopodium quinoa Protein–Protein Interaction (PPI) and Co-Expression (Co-Exp) Network
Model Reconstruction

A Chenopodium quinoa PPI network model was reconstructed by homology with
Arabidopsis thaliana, as previously reported [18]. Specifically, mitochondrial predicted or
annotated Chenopodium quinoa protein sequences (n = 515) were submitted to STRING
Cytoscape’s App [30] aiming to homology with Arabidopsis thaliana proteins. Each
Chenopodium quinoa protein sequence was associated with Arabidopsis thaliana protein,
showing the best identity value. For reconstructing the Chenopodium quinoa PPI network
model, all Arabidopsis thaliana homologous proteins (n = 506) were considered regardless
their homology, and their physical and/or functional interactions were filtered by consider-
ing only those “experiments” or/and “databases” annotated, with a STRING Score ≥0.15
and ≥0.35, respectively.

Reconstructed networks were analyzed at topological level by Analyzer App inte-
grated in Cytoscape v.3.8.2 [31]. Using the same approach, a second PPI network was
reconstructed starting from mitochondrial DEPs; DEPs were grouped in functional modules
by the support of the GO enrichment tool inserted in STRING Cytoscape’s App [30].

Protein Co-Exp networks were reconstructed by processing −CqMV1 (n = 12) and
+CqMV1 (n = 12) quinoa mitochondrial protein profiles. To reduce the number of missing
values, only proteins (n = 165) with identification frequency (IF) ≥ 70% were retained
and processed; of note, 119 out of 165 proteins were identified in all analyzed samples
((IF) ≥ 100%). −CqMV1 and +CqMV1 protein data matrices were processed by using
Spearman’s rank correlation coefficient; p ≤ 0.01, corresponding to a Spearman’s rank
correlation score ≥ |0.7|, was set as threshold. All processing was performed using the
statistical software JMP15.2 SAS, while the reconstructed Co-Exp networks were visualized
and analyzed by Cytoscape platform and its Apps [31].

Both PPI and Co-Exp networks were topologically analyzed by Centiscape Cytoscape’s
App [32]. As for PPI networks, Betweenness and Bridging centralities were calculated,
and nodes with above-average values were considered PPI hubs [18]. A set of differentially
correlated proteins (DCPs) were selected from Co-Exp network based on degree centrality,
and nodes with an above-average degree were considered Co-Exp hubs. In addition,
−CqMV1 (or +CqMV1) hubs with a degree higher than twice average, and a degree in
+CqMV1 (or −CqMV1) lower than half average, were considered −CqMV1 (or +CqMV1)
best Co-Exp hubs, respectively.

Statistical significance of all topological results was tested by considering randomized
network models; they were reconstructed and analyzed by an in house R script based on
VertexSort (to build random models), igraph (to compute centralities), and ggplot2 (to plot
results) libraries; results were visualized in the form of Violin plots.

2.8. Real-Time PCR

For CqMV1 detection, leaves of quinoa lines tested were placed in extraction bags
(Bioreba, Reinach, Switzerland) and diluted 1:20 (w/v) with carbonate buffer pH 9.6 (94)
added with 2% PVP40, 0.2% BSA, 1% sodium metabisulfite and 0.05% tween 20. Raw
extract WAS diluted 1:10 in sterile water and boiled 10 min at 95 °C. qRT-PCR screening
was performed using a CFX96™ Real-Time PCR Detection System (Biorad). PCR mix
was prepared with iTaq™ Universal Probes Supermix (Biorad) adding 3 U of reverse
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transcriptase from High-Capacity RNA-to-cDNA Kit (Thermo Fisher Scientific, San José,
CA, USA) for each sample. Reactions were performed in 10 µL of total volume adding 1
µL of boiled extract to 9 µL of PCR mix. The qRT-PCR protocol had a 30 min step at 37 °C
to perform the reverse transcription of the viral genome, then was followed by 1 min at 94
°C and 40 steps of denaturation at 95 °C for 10 s, annealing, and extension at 60 °C for 30 s.

3. Results

In this study, we investigated how viral infection by CqMV1 affects quinoa mitochon-
drial protein abundance and estimated the effect on processes and functions. For this
purpose, we analyzed the mitochondrial proteome from leaves of quinoa lines, not infected
(BO25, BO78) and infected (IPSP, REG), after confirming presence/absence of CqMV1 by
a specific qRT-PCR assay [7] (Figure 1A). In addition, to identify differentially expressed
proteins (DEPs) between not infected and infected phenotypes, data were evaluated at
functional level by systems biology approaches based on graph theory, and in particular
based on protein–protein interaction (PPI) and Co-Exp network models. For this goal, due
to missing functional annotations concerning quinoa proteins, we relied on homology with
Arabidopsis and its annotations.
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Figure 1. Mitochondrial proteome from leaves of Chenopodium quinoa, infected and not infected by
CqMV1. (A) qRT-PCR assay resulting in a Ct (threshold cycle) of 17.3 and 18.6 for IPSP and REG
lines, respectively, whereas for BO25 and BO78 the Ct were beyond the specificity threshold (≥30).
(B,C) Virtual 2D map (pI vs. MW) of proteins identified in –CqMV1 and +CqMV1 lines, respectively;
the colour code indicates average SpC (av.SpC) per protein. (D) N° proteins identified by av.SpC ≤ 1,
1 ≥ av.SpC ≤ 5 and av.SpC ≥ 5. (E) Venn diagram of proteins identified in −CqMV1 and +CqMV1;
proteins annotated or predicted as mitochondrial are shown in bold and in brackets. (F) Cellular
components (CC) of proteins identified in mitochondria enriched fractions from leaves of quinoa;
average identification frequency per sub-cellular localization is shown (IF; out of 24 LC-MS runs).

3.1. Mitochondrial Proteome from Leaves of Chenopodium quinoa, −CqMV1 and +CqMV1

The combination of 24 LC-MS/MS runs (BO25, BO78, IPSP, REG; n = 6 per line) of
proteins extracted from enriched quinoa mitochondrial fractions allowed for the identifi-
cation of 2186 total distinct proteins (Figure 1B–E). About 10% of proteins (n = 244) were
characterized by a total average SpC ≥ 1 and high rate of identification (Identification
Frequency, IF) (Table S1). To improve our knowledge about the subcellular localization of
the identified proteins, we performed their prediction by processing the quinoa protein
sequences (Table S2). We found that predicted (or/and annotated) mitochondrial proteins
showed the highest rate of identification (average IF = 12), while it was much lower for
proteins classified in other cellular components. These findings fit with the enrichment of
mitochondria and suggest a randomized identification of proteins that are not mitochon-
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drial. Thus, for further functional evaluations, we exclusively focused our attention on
the mitochondrial proteins here characterized. Globally, 515 proteins were classified as
mitochondrial or mitochondrial-plastidial (Figure 1E,F, Table S3); 274 were found in both
conditions, while 128 and 106 were specifically identified in −CqMV1 and +CqMV1 lines,
respectively.

3.2. Mitochondrial Proteins Differentially Expressed in −CqMV1 vs. +CqMV1

Following the comparison between −CqMV1 and +CqMV1 protein profiles, 49
mitochondrial proteins resulted in differentially expressed proteins (DEPs) (Figure 2A,
Table S4). As shown by the heat map, some proteins (n = 16) were also differentially
expressed between the two cultivars within not-infected (BO25 vs. BO78, n DEPs = 11)
and infected (IPSP vs. REG, n DEPs = 11) quinoa lines (Table S4). In particular, ATP
synthase subunit d (ATPQ) and serine hydroxymethyltransferase (SHM1) were specifically
up-regulated in BO25, while Chaperone protein dnaJ (GFA2) was specifically identified in
IPSP. All other DEPs followed a trend correlated to presence or absence of virus infection;
in fact, all biological replicates were grouped based on their phenotype (−CqMV1 and
+CqMV1) (Figure 2A,B), and correlation scores were higher between cultivars sharing the
presence or absence of virus infection (Figure 2C).
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Figure 2. Label-free quantification. (A) Hierarchical clustering of differentially expressed mito-
chondrial proteins (DEPs) selected by comparing −CqMV1 and +CqMV1 quinoa (p ≤ 0.05), Ward’s
method and Euclidean distance were used (JMP15.2 SAS software); for each DEP, protein RefSeqs
NCBI accession and Arabidopsis thaliana gene name (average homology 73%, min homology 39%,
max homology 91%) are shown. (B) Principal component analysis and (C) Spearman’s correlation by
processing the spectral count (SpC) of DEPs.
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DEPs were grouped in 12 PPI functional modules. Even if differential protein expres-
sion did not show large differences in terms of fold change (DAve index), proteins/nodes
belonging to the same module overall showed a well-defined expression trend (Figure 3).
Globally, most modules were related to metabolism (amino acids, lipids, ATP, and TCA cy-
cle). Those most consistent in terms of node number were mitochondrial respiratory chain
and amino acid metabolism. Other modules influenced by virus infection were involved
in proteolysis, HSP/Folding, redox homeostasis and stress response; all of them were
up-regulated in +CqMV1 (and down-regulated in −CqMV1), along with mitochondrial
respiratory chain and amino acid catabolic process. On the contrary, amino acid biosyn-
thetic process and ATP metabolism were down-regulated in +CqMV1 (and up-regulated
in −CqMV1). Of note, an opposite trend emerged concerning amino acid catabolic and
biosynthetic processes, as well as between ATP metabolism and mitochondrial respira-
tory chain.

DAve

-2 +20

up-regulated in -CqMV1

(down-regulated in +CqMV1)

up-regulated in +CqMV1

(down-regulated in -CqMV1)

AT5G47030
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AA catabolic process

Mitochondrial ribosome

Proteolysis

Stress response

Lipid trafficking/metabolism

Figure 3. Differentially expressed PPI functional modules between −CqMV1 and +CqMV1 quinoa.
Functional modules were enriched by STRING Cystoscap’s App. Positive DAve values (shade of red)
indicate proteins up-regulated in −CqMV1 (and down-regulated in +CqMV1), while negative DAve
values (shade of blue) indicate proteins up-regulated in +CqMV1 (and down-regulated in −CqMV1).

Concerning DEPs, most of them were identified in both−CqMV1 and +CqMV1 pheno-
types. However, FH (frataxin) and GFA2 (chaperone protein dnaJ GFA2) were exclusively
found in +CqMV1, while cICDH (cytosolic NADP+-dependent isocitrate dehydrogenase)
was the only DEP exclusively found in −CqMV1.

3.3. Network Analysis

Starting from the identified and classified mitochondrial proteins, we reconstructed
PPI and Co-Exp quinoa network models by homology with Arabidopsis, as previously de-
scribed for Cucumis sativus [18]. Of 515 mitochondrial quinoa proteins, 506 were associated
to an Arabidopsis protein, while 9 sequences did not return any match. Globally, quinoa
sequences showed an average sequence homology with Arabidopsis equal to 58%, and 90%
of proteins showed identity values ranging from 20.7 to 96.8, with a median equal to 67.5%
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(Figure 4A, Table S3). By exploiting Arabidopsis PPIs, a quinoa PPI network model of 506
nodes and 1601 edges was built. In parallel, mitochondrial proteins with higher rate of
identification (IF ≥ 70%, n = 165) were processed by Spearman’s correlation, and −CqMV1
and +CqMV1 quinoa Co-Exp network models were reconstructed.
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Figure 4. Chenopodium quinoa protein–protein interaction (PPI) and co-expression network recon-
struction. (A) Sequence homology between mitochondrial predicted/annotated Chenopodium quinoa
proteins and Arabidopsis thaliana (n = 506); red line indicates the average sequence homology (58%),
while blue line indicates median (67.5%). Using exclusively predicted or/and annotated mito-
chondrial proteins, a PPI model of 506 nodes and 1601 edges was reconstructed by STRING (only
experiments’ (score ≥ 0.15) or databases’ (score ≥ 0.35) annotated interactions were considered).
Network topological parameters, by Cytoscape 3.8.2 NetworkAnalyzer, are shown. PPI network and
degree distribution in (B) −CqMV1 and (C) +CqMV1 quinoa. Co-expression networks and degree
distribution in (D) −CqMV1 and (E) +CqMV1 quinoa.

The major connected PPI network modules of −CqMV1 (217 nodes and 1350 edges)
and +CqMV1 (218 nodes and 1356 edges) lines, as well as the major connected −CqMV1
(148 nodes and 637 edges) and +CqMV1 (127 nodes and 779 edges) co-expression mod-
ules, showed a degree distribution typical of scale-free networks (Table 1, Figure 4B–E).
In comparison to −CqMV1, a preliminary topological analysis evidenced in +CqMV1
co-expression model a higher network density and a lower network diameter, indicating
a more compact network that can be interpreted as the overall easiness of the proteins
to communicate and/or influence their reciprocal function. In contrast, no significant
differences were observed between the −CqMV1 and +CqM1 PPI networks; in fact, a high
value of network diameter in−CqMV1 PPI model can be misleading in terms of evaluation
of graph compactness because it is possible that two nodes are very distant, thus giving a
high graph diameter, but several other nodes are not. Therefore, a graph could have high
diameter and still being rather compact or have very compact regions (Table 1) [33].
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Table 1. Topological analysis of−CqMV1 (in red) and +CqMV1 (in blue) PPI and Co-Exp network models.

TOP. PARAMS
PPI NETWORK Co-Exp NETWORK

−CqMV1 +CqMV1 −CqMV1 +CqMV1

Connected components 1 1 1 1
Numbers of nodes 217 218 151 130
Numbers of edges 1350 1356 651 837

Avg. number of neighbors 12.442 12.440 8.623 12.877
Network diameter 9 13 12 8

Network radius 5 7 6 5
Characteristic path length 3.245 3.654 3.708 2.963

Clustering coefficient 0.494 0.457 0.354 0.415
Network density 0.058 0.057 0.057 0.100

Network heterogeneity 0.938 0.933 0.866 0.899
Network centralization 0.166 0.156 0.166 0.156

Chenopodium quinoa PPI and Co-Expression Network Hubs

PPI networks of−CqMV1 and +CqMV1 lines, and the corresponding Random models,
were analyzed and compared at topological level by considering betweenness and bridging
centralities. Nodes with both centralities above average in −CqMV1 PPI (and both centrali-
ties below average in +CqMV1 PPI) were defined −CqMV1 PPI hubs (Figure 5A, Table S5).
Similarly, nodes with both centralities above average in +CqMV1 PPI (and both centralities
below average in −CqMV1 PPI) were defined +CqMV1 PPI hubs (Figure 5B, Table S5).
Most −CqMV1 PPI hubs were involved in DNA recombination, repair and replication,
such as GYRA (DNA gyrase subunit A), RPA70B (replication protein A 70 kDa DNA-
binding subunit B) and ATR (serine/threonine-protein kinase ATR), while from +CqMV1
PPI hubs stress response (cPT4, cis-prenyltransferase 4; APX3, L-ascorbate peroxidase 3)
and translation mainly emerged, such as AT4G11120 (elongation factor Ts), AT4G02930
(elongation factor Tu) and AT2G45030 (Elongation factor G-2) (Figure 5A,B). In addition,
in both phenotypes some hubs were metabolism-related.

Using the same strategy adopted for PPI models but considering degree centrality,
we selected a group of proteins differentially correlated (DCPs or Co-Exp hubs) between
−CqMV1 and +CqMV1 Co-Exp models. Concerning −CqMV1, most Co-Exp hubs were
involved in mitochondrial respiration, TCA cycle and amino acid metabolism (Figure 5C,
Table S6). On the contrary, carbohydrate metabolism, lipid metabolism, ATP metabolism,
stress response and redox homeostasis were the functional categories characterizing most
+CqMV1 Co-Exp hubs (Figure 5D, Table S6).

Although no hub was in both PPI and Co-Exp models, we found that some of the
hubs were also differentially expressed proteins (Table 2). Specifically, BCE2 (lipoamide
acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex),
DELTA-OAT (ornithine aminotransferase) and GR-RBP2 (glycine-rich RNA-binding pro-
tein 2) were up-regulated in +CqMV1 and, simultaneously, +CqMV1 Co-Exp hubs; of note,
both DELTA-OAT and GR-RBP2 proteins are involved in response to stress. Similarly,
ATPQ (ATP synthase subunit d), SHM1 (serine hydroxymethyltransferase 1) and ETFAL-
PHA (electron transfer flavoprotein subunit alpha) were up-regulated in −CqMV1; ATPQ
and SHM1 were also −CqMV1 Co-Exp hubs, while ETFALPHA was hub in −CqMV1
PPI. On the contrary, MCCB (methylcrotonoyl-CoA carboxylase beta chain) and CLPB4
(chaperone protein ClpB4) were up-regulated in +CqMV1 and Co-Exp hubs in −CqMV1.
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Figure 5. Protein–protein interaction (PPI) and co-expression (Co-Exp) network hubs. PPI hubs in
−CqMV1 (A,B) +CqMV1 network models. Violin plots show average betweenness in −CqMV1 (in
red) and +CqMV1 (in blue) PPI random network models. Selected hubs are functionally grouped
and sorted by descending betweenness. Hubs in −CqMV1 (C,D) +CqMV1 co-expression network
models. Violin plots show average degree in −CqMV1 (in red) and +CqMV1 (in blue) Co-Exp
random network models. Selected hubs are functionally grouped and sorted by descending degree.
Red and blue highlighted gene names indicate best hubs (selected by high stringent criteria) in
−CqMV1 and +CqMV1 Co-Exp networks, respectively. Red and blue highlighed nodes represent
Co-Exp hubs defined “best”, while green network edges indicate negative correlations.

Table 2. Proteins both differentially expressed and hubs in −CqMV1 (in red) and +CqMV1 (in blue).

Differential Expression PPI HUBS Co-Exp HUBS

DEPS UP-reg in −CqMV1 +CqMV1 −CqMV1 +CqMV1

BCE2 +CqMV1 X
DELTA-OAT +CqMV1 X

MCCB +CqMV1 X
CLPB4 +CqMV1 X

GR-RBP2 +CqMV1 X
ATPQ −CqMV1 X
SHM1 −CqMV1 X

ETFALPHA −CqMV1 X
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3.4. Abiotic Stress Differentially Affected Infected and Not Infected Line

Since proteomic and network analysis revealed up-regulation of stress-responsive
proteins in CqMV1 infected lines, we aimed to test the impact of an exemplary abiotic
stress (drought) on the quinoa lines considered. Water stress was determined by avoiding
water supplementation for 4 days. After this period, differential wilting symptoms were
observed in quinoa lines: −CqMV1 plants (BO25 and BO78 lines) displayed a more severe
wilting status of leaves compared with +CqMV1 plants (REG and IPSP) (Figure 6A).
Accordingly, the relative water content (RCW) was significantly higher in CqMV1-infected
plants compared with not-infected lines (Figure 6B), while the RCW determined on both
upper and lower leaves under well-watered condition did not reveal any differences among
the quinoa lines considered (data not shown).

Figure 6. Infected and not infected lines affected by drought stress. (A) Effect of drought stress on
−CqMV1 (BO25, BO78) and +CqMV1 (REG and IPSP) lines (scale bar: pot width 10 cm). (B) Average
values of relative water content (RWC) of leaves under watered (blue bars) and drought (red bars)
conditions. Different letters indicate statistically significant difference (p ≤ 0.05) within the watered
(lowercase letters) and drought stress (capital letters) samples of 5 independent biological replicates
(n = 5); Anova and Tukey’s test were used.

4. Discussion

Following our recent findings about existence of plant mitochondrial viruses as true
virus-encoded RdRp-dependent replicating RNA elements [7], we provided here molecular
evidence, at proteomic system level, that Chenopodium quinoa Mitovirus 1 is associated with
changes in mitochondrial protein expression in Chenopodium quinoa-infected plants in a mild
but well defined way. Given the wealth of reports on quinoa molecular characterization, it
is somewhat surprising that its proteome has received only limited attention. In fact, this
study is among the few manuscripts that provide features of quinoa proteome by large-scale
proteomic approaches [11–13] and the first focused on its mitochondrial proteome, as well
as the first quinoa proteome investigation relying on systems biology and graph theory.

In addition to characterizing mitochondrial proteins of quinoa leaves, the proteomic
analysis had the aim of measuring a differential physiological reaction between CqMV1
infected and not infected plants. Globally, by their quantitative comparison, marked differ-
ences were not detected. In fact, although 49 DEPs represent about 10% of all identified
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and predicted mitochondrial proteins, most fold change variations were low. This could
fit with the idea that mitovirus seems to cause no specific harm to its host [7], and its
presence was unnoticed phenotypically even though quinoa has been a common test
plant among virology labs worldwide, earning the name “cryptic” for its infection fea-
tures. Although Chenopodium quinoa mitochondrial virus is not subjected to the typical
dicer/argonaute-dependent antiviral silencing response [7,34], mitochondrial virus replica-
tion in plants is likely limited by the generation of specific sRNA produced through other
molecular pathways. In this context, we previously found that 16-nt mitoviral sRNA results
from a nonviral specific RNA degradation process [7], while other authors hypothesized a
sRNA production driven by pentatricopeptide repeat proteins (PPR proteins), providing a
testable model of antiviral defense based on intra-mitochondrial sRNA generation [35,36].

Even if we did not observe a considerable differential expression between −CqMV1
and +CqMV1 quinoa lines, some PPI functional modules showed a well-defined expression
trend. Noteworthily, it was opposite for amino acid catabolic and biosynthetic processes,
as well as between ATP metabolism and mitochondrial respiratory chain, suggesting non-
random regulation; similarly, PPI network hubs suggest in infected plants an activation
of translation at the expense of DNA recombination, repair and replication and thus a
coordination of these mechanisms by virus infection. Moreover, the increase of amino
acid catabolism in infected plants correlated with up-regulation of proteins involved in
proteolysis and HSP/folding. Notably, +CqMV1 lines displayed an increase of some
proteins belonging to the branched chain amino acid (BCAA) catabolism (BCE2, MCCB),
as well as arginine catabolism (DELTA-OAT). It has been demonstrated that catabolism of
BCAAs (aa belonging to the aspartate family) functions as an alternative electron donor in
the respiratory chain under stress condition [37]. Of note, BCAAs also play an important
role in plant drought tolerance as an alternative source of respiratory substrates; under
energy-limited conditions, such amino acid family can be degraded in mitochondria
providing electrons to the respiratory chain, and in precursors to the TCA [38]. In the same
way, in sesame genotypes, drought tolerance traits have been linked to the ability of plants
to properly modulate redox homeostasis as well as amino acid metabolism (e.g., induction
of BCAA catabolism) [39].

As for ornithine aminotransferase (DELTA-OAT), whose expression is increased by
CqMV1 infection, it has been reported to enhance tolerance to multiple abiotic stress [40,41].
It is a pyridoxal phosphate (PLP)-dependent enzyme involved in the conversion of or-
nithine (Orn) into pyrroline-5-carboxylate (P5C), using α-ketoglutarate (AKG) and gluta-
mate (Glu) as co-substrates [42]. Since P5C is a precursor of proline, it has been suggested
that DELTA-OAT belongs to the alternative route of proline biosynthesis in plants via
arginine catabolism. DELTA-OAT is also important for recycling Orn in plants. Ornithine
is a non-protein amino acid playing a central role in the polyamine (PA) amino acid biosyn-
thetic pathway; indeed, it has been suggested that ornithine might be involved in the
monitoring and/or signalling pathway for the biosynthesis of metabolites such as proline,
putrescine, γ-aminobutyric acid (GABA), and perhaps also arginine [43].

Infected plants also showed up-regulation of a module involved in stress response and
redox homeostasis. This is in agreement and reinforces our previous speculation that the
presence of CqMV1 in the mitochondria alters the oxidative stress cellular signalling [7]. It
was further suggested by network analysis with the identification of a number of +CqMV1
PPI (cPT5, APX3) and Co-Exp (DELTA-OAT,CAT, AT4G02580 and GR-RBP2) hubs involved
in stress response and redox homeostasis. The enzymatic defense activity of catalase
(CAT) against viruses has been reported in several studies [44–47], while L-ascorbate
peroxidase 3 (APX3) has been recently associated with protection from oxidative damage
in cross-protected plants [48]. The efficient defence against oxidative stress at cellular
and subcellular levels may be related to the high tolerance of plants to environmental
stresses [49]. In this context, mitochondria play a key role defending themselves and the
cell from an excess of ROS. In fact, mitochondria represent a major source of ROS production
and consequent oxidative damage in the plant cell, as indicated by proteomic studies [50,51].
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To do this, the continuous consumption/regeneration of small antioxidant molecules (such
as ascorbate, glutathione and NADPH) and the modulation of ROS detoxyfying enzymes
are required. In addition, among differentially expressed hubs, GR-RBP2 was interest
because, in Arabidopsis thaliana under cold stress, it was observed to exert its function by
modulating the expression and activity of various classes of genes, including catalase and
peroxidase [40].

5. Conclusions

Although the combination of high-throughput proteomics and network analysis repre-
sents a powerful tool to decipher the proteome modulation induced by plant–microorganism
interaction, its application to non-model organisms, such as quinoa, displays some lim-
itations. As already reported in the introduction section, many plant species, including
quinoa, suffer from the lack of well-annotated protein sequences, functional annotations
and network models that would allow facing these system studies in a more complete
and reliable way. Nevertheless, besides representing the first large-scale study on the
mitochondrial proteome from leaves of quinoa, this work provided new insights on how
CqMV1 affects mitochondrial functionality by identifying proteins (differentially expressed
and network hubs) modulated by viral infection and potentially involved in the plant
response. In this scenario, we revealed that CqMV1-infected plants (REG and IPSP) show
up-regulation of proteins involved in amino acid catabolism, folding/stress response and
redox homeostasis. The modulation of such processes occurs in plants growing under
several stress conditions, including drought. Notably, the up-regulation of these processes
in +CqMV1 lines mirrors the higher water retention and higher tolerance degree to drought
observed in CqMV1 infected plants, although a direct link between the presence of CqMV1,
the modulation of specific proteins and the ability of REG and IPSP to cope with drought
stress could not be established by our experimental approach at this stage. However, it rep-
resents a new mechanistic hypothesis deserving in-depth investigation in the near future,
through a greater number of samples and multi-omics data, to improve the reconstruction
of the network models, and with new experiments, to validate the most relevant proteins
predicted by the network analysis (in particular, differentially expressed hub proteins
that represent central point of regulation of metabolic pathways and cellular processes
characterizing specific phenotypes).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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−CqMV1 and +CqMV1, Table S3: Mitochondrial predicted or annotated proteins identified in
mitochondria enriched fractions from leaves of Chenopodium quinoa, −CqMV1 and +CqMV1,
Table S4: Differentially expressed proteins, selected by LDA (p < 0.05), by comparing mitochondrial
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